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Abstract—In this paper we present an improved method 

for counting embryonic stem cells (ES cells) in 

fluorescence microscopy images. By applying a graph-

clustering algorithm, we increased the precision of the 

original technique [1], making it suitable for images of 

the migration of embryoid body cells. The improved 

method was extensively tested on more than a hundred 

images and the results demonstrated its superiority. 
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I.  INTRODUCTION  

Stem cell research has been hailed for the potential to 

revolutionize the future of medicine with the ability to 

regenerate damaged and diseased organs. Embryonic 

Stem cells (ES cells) can generate all three germ layers 

and also specialized themselves in adult cells of the 

human body. This characteristic of pluripotency and the 

real possibility of directing their differentiation in vitro 

to specific cell types make them a promising alternative 

for cell-based treatments of various diseases. 

Cell counting plays an important role in the statistical 

analyzes and enables specialists to understand and 

validate experiments. Using different cell markers they 

are able to determine, by manual counting, the total 

number of cells, how many specialized themselves in 

specific mature cells and how many cells have died. 

However, manual counting is tedious, time-consuming 

and yields subjective results. Thus, the automation of 

the cell counting process is a crucial step for 

streamlining the evaluation of culturing methods and 

consequently accelerates the stem cell therapy process.  

With the discovery of the stem cell potential, many 

researchers have been dealing with the segmentation, 

tracking and quantification of these kinds of cells. See 

[1] and [3] for a review. However, these works deal 

with only one type of stem cell in their images. The first 

work to deal with several types of pluripotent stem cells 

in the same microscopy image was presented in [1]. 

Although it works well, its performance is significantly 

reduced in images where there is more than one brighter 

point per cell. 

In this paper, we present an improved method for 

counting ES cells in fluorescence microscopy images. 

We have extended and improved the method presented 

in [1], which was designed to handle images of stem 

cell sections from embryoid bodies (EB cryosections 

images). As in that previous work, our method uses the 

luminance information to generate a graph-based image 

representation. The cell pattern is defined as a subgraph 

and then a graph mining process is used to detect the 

cells. The improvement is achieved by applying a 

graph-clustering algorithm subsequent to the mining 

process. It increases the precision for images of EB 

cryosections and makes it suitable for images of the 

migration of embryoid body cells. Both, the original 

method [1] and its improved version here proposed 

were extensively tested on a database of 141 images and 

specialists validated the results. We improved the 

precision by 2.4% for images of EB cryosections and 

increased, from 67.33% to 89.74%, for the images of 

embryoid body cell migration with a zoom of 40×. 

The remainder of the paper is organized as follows: 

Section 2 details the image features and the acquisition 

process; Section 3 provides an overview of the original 

method; Section 4 describes the improvement method; 

Section 5 presents the experimental results, and; Section 

6 presents our conclusion and some future works. 

II. IMAGE CHARACTERIZATION 

The embryoid body (EB) images used in this work 

were collected in the Institute of Biomedical Sciences at 

UFRJ/Brazil. We deal with embryoid bodies obtained 

from ES cells cultured in vitro. ES cells are induced to 

form floating spheres structures called embryoid bodies. 

EBs are cultured for eight days under a neural 

differentiation process. In this procedure, the EBs are 

stimulated to differentiate into a neural phenotype by 

incubation during the last four days, with retinoic acid 

at final concentration of 2µM. In order to obtain EB 

cryosections images, a fraction of these EBs were fixed 

and processed for cryoprotection. Sections of 10µm are 

obtained on cryostat and nuclei were counterstained 

with DAPI (4’-6’-Diamidino-2-phenylindole) for five 

minutes. Images of embryoid body cells migration (EB 

cells migration) are obtained from the other EB fraction, 

which is platted onto laminin/fibronectin coated glass 

slides for four days to promote cell migration. Cells 

were fixed with 4% paraphormaldehyde and stained as 

before. The acquisition system consists of a Nikon 

Eclipse TE300 inverted epi-fluorescence microscope, a 

MagnaFire Digital CCD camera and the Image Pro 
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Express software. The acquisition procedure is semi- 

automatic and the specialist controls some parameters, 

such as magnification, time exposure and focus. The 

resolution of captured images is fixed in 1392×1040 

pixels. A 40× zoom was used for images of EB 

cryosections. The images of EB cell migration were 

captured using a 40× and 20× zoom. All images were 

stored using Tagged Image File (.tif) format with 

lossless LZW compression. Fig. 1 shows examples of 

captured images. 

III. OVERVIEW OF THE ORIGINAL METHOD 

In this section we briefly review the main steps of 

the original method. For more details, please see [1].  

A Gaussian filter is applied to reduce noise and then 

the cells are separated from the background by using a 

simple threshold. Next, the horizontal axis of the image 

histogram is partitioned into intervals of fixed size (ε). 

The foreground image is then divided into 8-connected 

regions of pixels that belong to the same partition in the 

histogram. The regions are then labeled with natural 

consecutive numbers so that higher luminance has the 

smaller numbers. The result of this step is a matrix M, 

with the same dimensions of the input image, where 

each entry M(i, j) contains the component label value to 

which the pixel p(i, j) belongs. 

A region adjacency graph G = (V, E) is constructed 

based on M. Each vertex vi ∈ V represents a region and 

its index corresponds to its label. The edges in E 

connect a pair of 4×4 adjacency regions. Each ES cell is 

represented, in the G, by a simple path S, whose vertices 

are in ascending order. Thus, a graph mining process is 

applied to detect the cells.  

Although the method proposed in [1] works well, it 

is prone to errors when too many cells contain more 

than one brighter point, as shown in Fig. 2. The model 

of the original technique assumes that cell images have 

only one brighter point and that the luminance decreases 

monotonically as it goes from this point to the cell 

boundary. However, due to phenomena such as the 

DNA condensation and picnotic nuclei [2] the 

assumption is not always true. Thus, the method 

proposed in [1] does not work properly for images of 

EB cell migration where those phenomena are more 

recurrent. 

In order to improve the original method and solve 

this shortcoming, after the graph mining process we 

apply a hierarchical graph-clustering algorithm as 

described in next section. More details about definitions 

and methods for graph clustering can be found in [4].  

IV. IMPROVED METHOD 

To decrease the number of false positives, i.e. the 

elements that are wrongly classified as a cell, we merge 

the simple paths that represent the same cell in clusters 

(supersets). We use the Euclidian distance as the metric 

and the fact that, if a set of simple paths represents the 

same cell, they should have a common neighbor, as 

shown in Fig. 2d (simple paths S5, S6, and S7 for 

example). To facilitate the description of the algorithm 

consider the follows definitions: 
 

• the distance between two simple paths Si and 

Sj, is given by dE(ci, cj) where ci and cj are the 

center point of the bounding box of the regions 

which have the biggest label in Si and Sj 

respectively; 

• the neighborhood of a simple Si is defined as 

the neighbor vertices of the vertices of Si that 

are not in Si; 

   
(a)   (b)   (c)   

Figure 1: Captured stem cell images: a) EB cryosections; b) EB cell migration with a zoom of 40× and; c) EB cell migration with a zoom of 20×. 

   
(a) (b) (c) 

 
(d) 

Figure 2: Original method result: a) input image with visible DNA 

condensation phenomenon (the pink arrows point out the brighter 

points); b) and c) result of the mining process (the yellow regions 

represent the simple paths with the correspondent biggest vertex index 

in red; the red dots represent the cells detected) and; d) graph-based 

image repesentation with the simple paths (Si), detected over the 

mining, marked by red dashed lines. Note that, although the mining 

process detects the simple paths correctly, the method failed. For 

example, the simples paths S7, S5 and S6 should represent only one cell. 

As a result, it detected 14 cells instead of 5.  
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• two simple paths Si and Sj are neighbors if 

there is at least one edge connecting a vertex of 

Si to a vertex of Sj;  

• a superset is a set of vertices made up of 

simple paths and additional vertices; 

 

The basis of the clustering algorithm is that two 

simple paths Si and Sj represent the same cell if        

dE(ci, cj) < λ, where λ is one-half of the average cell’s 

diameter. To implement this, consider the following 

algorithm:  
 

Given the graph G and the list L = {S1, S2, …, Sn} of 

simple paths detected through the mining process, in 

order to group the simple paths which represent the 

same cell in clusters do the following: 
 

1. Group the simple paths of L that have a 

common neighbor into sets of vertices.  

2. For each set, merge those paths that represent 

the same cell (dE<λ) into supersets. If all 

simple paths, of a given set, are merged and the 

common vertex does not represent the 

background, add this vertex to the superset. 

Simple paths that are not merged in this step 

become a superset.  

3. Evaluate the neighborhood of each superset 

and add the vertices that: a) do not belong to 

the other superset; b) are not neighbors of other 

supersets; and c) do not represent the 

background image. 

4. Merge the supersets that represent the same 

cell (neighbor supersets or the ones which have 

a common neighbor, and dE< λ). 

5. Repeat steps 3 and 4 until no supersets can be 

merged and no vertex can be added to some 

superset.  
 

The result is a collection of supersets (clusters) in the 

graph, each one representing a cell. Fig. 3 presents the 

result of the clustering algorithm for the graph and 

image showed in Fig. 2.  

I. EXPERIMENTS AND RESULTS 

In this section, we assess the proposed method and 

analyze the experimental results. Both, the original 

counting method [1] and its improved version here 

proposed were tested. Although, the cell counting is a 

well known problem, we are not aware of any other 

work that handles with several types of pluripotent stem 

cell in the same microscopy image. For that reason, we 

not provide comparative studies related to others work. 

A database with 141 images, such as those described 

in Section II, was constructed and divided into four sets: 

set 1, with 69 images of EB cryosections with an 

acceptable level of noise; set 2, formed by 23 images of 

EB cryosections with strong presence of noise; set 3, 

with 32 images of EB cell migration with a zoom of 

40x, and; set 4, composed of 17 images of EB cell 

migration with a zoom of 20x. The sets 1 and 2 are the 

same used in [1]. The values for the input parameters 

were obtained through experimental tests. The value of 

the Gaussian radius σ was 2 for image sets 1, 3 and 4, 

and 3 for image set 2. The threshold was the same used 

in [1] for all groups. The histogram was partitioned into 

intervals of size ε = 16 for sets 3 and 4, and ε = 8 for 

image sets 1 and 2. The estimated value for the cell 

diameter was λ = 12 for set 1 and 2. For sets 3 and 4, we 

use λ = 30 and λ = 15, respectively. 

In order to compare the quality of both methods, we 

used the measures of precision (P), recall (R) and           

F-measure (F) defined as follows: P = tp/(tp+fp),              

R = tp(tp+fn) and F = (2*P*R)/(P+R), where tp (true 

positives) represents the number of items correctly 

labeled as cells, fp (false positives) represents the items 

incorrectly classified as cells and fn (false negatives) 

represents items that were not classified as cells but 

should have been. The values of fp and fn were obtained 

by specialists from the Institute of Biomedical Sciences 

at UFRJ/Brazil. They evaluated each image counted 

using both methods by pointing out cells that were not 

counted (false negatives) and artifacts that were 

incorrectly classified as cells (false positives). The 

measures were calculated for each image and then 

averaged over all images. The results of the improved 

method are presented in Table1 and Fig. 4 compares 

both methods.  
 

TABLE 1: EXPERIMENTAL RESULTS OF THE IMPROVED METHOD. ALL 

NUMBERS ARE AVERAGE VALUES OVER ALL IMAGES. 

 
Precision 

(%) 
Recall 

(%) 
F-measure 

(%) 

Image set 1 96.29 93.13 94.60 

Image set 2 96.96 91.48 94.08 

Image set 1 and 2 96.47 92.68 94.46 

Image set 3 89.74 83.70 86.09 

Image set 4 97.07 82.74 89.24 

 

The original technique [1] was designed for images 

of EB cryosections (image sets 1 and 2) and most 

counting errors were due to the existence of more than 

one brighter point per cell. By applying the graph-

  
(a) (b) 

 
(c) 

Figure 3: Improved method result: a) and b) result from the clustering 

algorithm on the input image (the yellow regions represent the 

supersets with correspondent biggest vertex index in red; the red dots 

represent the cells detected); and c) the clustering algorithm outcome 

on the graph. Clusters (supersets) are marked by dashed colored lines 

and the colored numbers represent the biggest index of each cluster.  
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clustering algorithm described in the previous section, 

we improved the precision, recall and F-measure by 

2.49%, 0.64% and 1.58% respectively for these images.  

As for images of the migration of EB cells, we 

improved the precision by 22.41% for images with a 

zoom of 40× (image set 3). However, some cells that 

were very close (a distance less than λ) are detected as 

only one, increasing the number of false negatives. 

Nevertheless, the F-measure increased from 77.83% to 

86.09% for those images. When it comes to images of 

EB cell migration with a zoom of 20x (image set 4), we 

see that the improved method does not work properly. 

Due to the zoom factor, the cells present in these images 

are very small and as a consequence the brighter points 

are not visible. Thus, the cells appear with just one 

bright point as supposed by the original technique. As a 

consequence, when the clustering process is applied, it 

groups some simple paths that represent different cells. 

Fig. 5 shows examples of three images, one for each 

image type, processed by both methods.   

II. CONCLUSION AND FUTURE WORKS 

In this work a refined method for counting ES cells in 

fluorescence microscopy images was described. It uses 

the same principle of cell detection proposed in [1] and 

incorporates a graph-clustering algorithm to improve the 

efficiency of the resulting system. Both methods were 

extensively tested in a database of 141 images and 

specialists validated the results. We improved the 

precision by 2.4% for images of EB cryosections and 

increased it from 67.33% to 89.74% for images of EB 

cell migration with a zoom of 40×. Nevertheless, the 

original technique works better than the one presented 

previously in this article for images of EB cell migration 

with a zoom of 20×, since they have the cell pattern 

proposed in [1].  

Future works involves extending the proposed 

methodology to deal with images of ES cells under 

Mouse Embryonic Fibroblast (MEF). Although the 

current method is able to detect the cells, it is not able to 

distinguish between ES cells and MEF. 
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(a) (b) (c) 

Figure 4: Comparison of original method [1] and its improved version here proposed: a) Precision, b) Recall and c) F-measure.  

   

(a) original method – 564 cells detected (b)  original method – 516 cells detected (c)  original method – 1508 cells detected 

   

(d) improved method – 534 cells detected (e) improved method – 308 cells detected (f)  improved method – 1268 cells detected 

Figure 5: Results of original and improved method: the red dots represent the cells that were detected and the yellow arrows point out some image 

regions where the graph-clustering algorithm led different cell detection (counting). 


