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Abstract—The computation of the optical flow field can 

be performed through the minimization of some energy 

functional that consists of two terms: a data term, that 

requires brightness constancy of patterns in the image 

sequence, and a regularization term to guarantee 

piecewise smoothness and to avoid ill-posed problems. 

In this paper, we propose a new regularization term 

based on the symmetric gradient of the flow. The new 

algorithm is discussed in terms of invariance and a 

numerical scheme is developed based on Horn and 

Schunck's technique. In the numerical results, we 

compare our method with the traditional Horn and 

Schunck's algorithm to show the potential of our 

formulation when considering efficiency and precision.  
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I.  INTRODUCTION  

According to Horn and Schunck,Optical Flow (OF) 
is the distribution of apparent velocities of movement of 
brightness patterns in an image [5]. The robust 
computation of this flow is strongly needed for many 
applications in computer vision and medical image 
analysis [3], [4]. There are a great deal of papers about 
OF calculation. For instance, Barron et al. [2] summarize 
the major algorithms and McCane et al. [6] evaluate the 
performance of seven OF algorithms using synthetic and 
real image sequences.  

For the OF estimation, the Horn and Schunck's 
algorithm is one of the most used due to its simplicity 
and efficiency, which justifies and motivates the study 
reported in this work. We focus our attention on the 
smoothness constraint (regularizer) of this algorithm [5]. 
It computes the regularization term as the sum of the 
square magnitudes of the gradients of the OF velocity 
components [1], [5]. The mathematical foundations 
behind regularization theory in computer vision and OF 
is considered in other works [7], [8].  

The focus of the present paper is to examine the 
performance and efficiency of Horn and Schunck's 
algorithm when the smoothness constraint is based on 
the symmetric gradient. Up to the best of our knowledge, 
it is a new proposal in OF computation. We provide the 
description of the new algorithm and, in the numerical 
experiments, we compare the classical and modified 
algorithms using synthetic data in the experimental tests.  

The paper is organized as follows. In Section II, the 
algorithm of Horn and Schunck is presented. The 
proposed algorithm is described in Section III. Two 
numerical tests are shown in Section IV. Finally, Section 
V contains our conclusions and future directions of this 
work. 

II. HORN AND SCHUNCK'S ALGORITHM  

A sequence of 2D images is mathematically 

described as a function ),,( tyxI , where I is the image 

intensity at time t and at position ),( yx . The algorithm 

of Horn and Schunck computes the velocity 

),( vuv =
r

for each pixel of the image by minimizing 

the functional given by 
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where α  is a regularization parameter; 
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minimizing the functional (1), we obtain the Euler’s 
equations 
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A. Numerical Scheme 

In (4), u
2∇  and v

2∇  are approximated by [5] 
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where kjiu ,,  and kjiv ,,  are local average values 

between the pixels estimated by [5] 
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By replacing (5) in (4),  we can obtain the system 
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It is iteratively solved through the procedure [5] 
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where n  is the current iteration of the numerical 

procedure; 
n

u and 
n

v  are estimated by (6)-(7). xI , 

yI  and tI are, respectively, approximated by [5] 
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where the j index corresponds to the x direction in the 

image, the i index to the y direction, the k index lies in 

the time direction. 

III. MODIFIED HORN AND SCHUNCK'S 

ALGORITHM  

In this section, the proposed method is presented. It 

computes the velocity ),( vuv =
r

for each pixel of the 

image by minimizing the functional given by 
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symmetric gradient and 
2

bE  is computed by (2). By 

minimizing the functional (11), we obtain the Euler’s 
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Before considering the numerical issues, we shall 

discuss some aspects of the proposed method. Firstly, 
2

sG  remains invariant when replacing v
r

 by 
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A. Numerical Scheme 

In (12), u
2∇  and v

2∇  are approximated by (5). 

The cross-partial derivatives  in (12) are computed by 
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where the difference operators uΦ  and vΦ are 

determined by 
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By replacing (5) and (13) in (12), we can obtain the 

system 
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where 
n

u and 
n

v  are estimated by (6)-(7), 
n

uΦ and 

n

vΦ  are calculated through (14)-(15). xI , yI  and 

tI are approximated by (8)-(10). 

IV. EXPERIMENTAL TESTS 

In order to demonstrate the efficiency and robustness 
of the proposed algorithm, two numerical experiments 
will be carried out and discussed. We compare the 
performance of the developed model with the original 
algorithm of Horn and Schunck using two error metrics. 

The first one, namely )(θE , is the mean of the angular 

error θ  computed by  ),ˆ(cos 1 vv ⋅= − r
θ  where v̂  is 

the correct motion vector and  v
r

 is the estimated OF 

vector.  

The second error metrics is the mean-squared-error 
(MSE) defined by: 
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where NM × is the spatial resolution of the image. 

For the test cases, we stop the iterative scheme when  

,10||/|| 31 −+ <− nnn FFF  where F  is the value 

of the functional (1) or (11) in iteration n of the 

algorithms. Fig. 1 illustrates the first frames of the 

synthetic sequence in cases 1 and 2, which has 

8080× pixels. 

       (a) Test case 1                     (b) Test case 2 

     
 

Figure 1. First frames of the synthetic sequence in the test cases. 

 
Figure 2.  Real  OF for  cases 1 and 2. 

(a) Test case 1 - A texture is moving with the constant 

speed )1,1(=v
r

pixel/frame (see Fig.1a). Considering 

2.0=α  (regularization parameter), the OF estimated 

by both the original algorithm of Horn and Schunck and 

the proposed model are pictured in Figs. 3 and 4, 

respectively. As one can see from these figures, the 

algorithms provided reasonable results when compared 

with the real OF (see Fig. 2). Tables I and II show the 

convergence rate and errors of the algorithms. It can be 

seen that the performance of the new model is quite 

similar to the original algorithm when the α  

regularization parameter  increase. 

 
Figure 3.  OF estimated in case 1 by the original Horn and Schunck 

algorithm. 

 
Figure 4.  OF estimated in case 1 by  the proposed algorithm. 

TABLE I.  CASE 1  -  PERFORMANCE  OF  HORN AND 

SCHUNCK´S ALGORITHM 

α  Iteration number     )(θE  MSE 

0.1 19 1.573 0.027 

0.2 26 1.522 0.028 

0.4 50 1.572 0.034 

0.8 107 1.571 0.040 

1.0 134 1.571 0.042 
 

TABLE II.  CASE 1 - PERFORMANCE  OF  THE  MODIFIED 

ALGORITHM 

α  Iteration number     )(θE  MSE 

0.1 20 1.573 0.029 

0.2 25 1.572 0.029 

0.4 43 1.571 0.034 

0.8 87 1.571 0.041 

1.0 110 1.571 0.042 
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(b) Test case 2 - We add multiplicative noise to the 

image I  in Fig. 1a, using equation ,nIIJ += where 

n  is uniformly distributed random noise with mean 0 

and variance 0.2. The first frame of this case is shown in 

Fig.1b. Figs. 5 and 6 present the OF computed by the 

original algorithm of Horn and Schunck and proposed 

model, respectively, for .4.0=α  It can be seen from 

these figures that both algorithms properly compute the 

OF when compared with the real OF (see Fig. 2). This 

observation is supported by the errors shown in Tables 

III and IV. Also, the number of iterations reported in 

these tables show that the convergence rate of the 

modified algorithm was a little superior to the one 

observed by the original method.  

 

 
Figure 5.  OF estimated in case 2 by the original Horn and Schunck 

algorithm. 
 

 
Figure 6.  OF computed in case 2 by the proposed algorithm. 

 

TABLE III.  CASE  2  - PERFORMANCE  OF  HORN AND 

SCHUNCK´S ALGORITHM 

α  Iteration number     )(θE  MSE 

0.1 21 1.577 0.035 

0.2 25 1.568 0.036 

0.4 48 1.570      0.034 

0.8 102        1.572 0.042 

1.0 122 1.569      0.051 

 

 

 

TABLE IV.  CASE  2  - PERFORMANCE  OF  THE  MODIFIED 

ALGORITHM 

α  Iteration number     )(θE  MSE 

0.1 20 1.565 0.040 

0.2 24 1.572 0.038 

0.4 44 1.575      0.035 

0.8 85 1.571 0.042 

1.0 106 1.569      0.046 

 

V. CONCLUSION 

The performance of the modified version of Horn 

and Schunck's algorithm has been evaluated on 

synthetic image sequences and compared with that of 

the classical algorithm. In the numerical experiments, 

the precision of the new model was practically similar 

to the original technique. Moreover, the tests indicate 

that the modified Horn and Schunck's algorithm has 

convergence rate a little superior to the original model. 

Further directions for this work are to explore 

connections with diffusion filters and the effects of the 

invariance observed in Section III for real world image 

sequences [8]. Also, more experimental tests with 

different movements will be achieved in order to allow 

more comparisons between the algorithms. 

ACKNOWLEDGMENT  

We gratefully acknowledge the support provided by 

CNPq (Grant 141474/2009-2). Also, we would like to 

acknowledge the reviewers for their valuable comments 

and suggestions that helped to improve the quality of 

the manuscript. 

 

REFERENCES 

 
[1]  F. Bartolini, A. Piva and R. Piva, “Enhancement of the Horn 

and Schunck optic flow algorithm by means of median filters,” 
Proceedings 13th International Conference on Digital Signal 
Processing DSP97, pp. 503-506, 1997. 

[2] J.L. Barron, D.J. Fleet and S.S. Beauchemin, “Performance of 
optical flow techniques,”  The International Journal of Computer 
Vision, vol. 12, pp. 43-77, 1994. 

[3] J. Konrad and E. Dubois, “Bayesian estimation of motion vector 
fields,” IEEE Trans. on Pattern Analysis and Machine 
Intelligence, vol. 14, pp. 910-927, 1992.  

[4] M.A. Gutierrez, S.S. Furuie, M.S., Rebelo and J.C. Meneghetti, 
“Automatic algorithms to analyze and quantify cardiac left 
ventricle parameters by means of spect,” ESPC/SPI-B285-v-
Medical Imaging, vol V, 2005.  

[5] B.K.P. Horn and B.G. Schunck, “Determining optical flow,” 
Artificial Intelligence, vol. 17, pp. 185-203, 1981. 

[6] B. McCane, K. Novins, D. Crannitch and B. Galvin,, “On 
benchmarking optical flow,” Computer Vision and Image 
Understanding, vol. 84, pp. 126-143, 2001.  

[7] T.A. Poggio, V. Torre and C. Koch,  “Computational vision and 
regularization theory,”  Nature,  pp. 314-319, 1985. 

[8] J. Weickert and C. Schnorr, “A theoretical framework for 
convex regularizers in PDE-based computation of image 
motion,” International Journal of Computer Vision, vol. 45, pp. 
245-264,2001.

 


