IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

Image Retrieval by
Multi-Scale Interval Distance Estimation

Carlos Elias Arminio Zampieri Jorge Stolfi
UNICAMP - Campinas, Brazil UNICAMP - Campinas, Brazil
carlos.zampieri@students.ic.unicamp.br stolfi@ic.unicamp.br
Abstract—We describenulti-scale interval searctMuSIS), we will assume that all images in the database (as well

a general method or for query-by-example retrieval in image as the query image to be searched) have the same size and
collections, using interval arithmetic and special image shape and are monochromatic; so that the value of an image
pyramids to perform multi-scale distance estimation. The [ at a pointp of the domain, called pixel and denoted by
interval estimates are used to quickly eliminate candidate I[p], is a single real number in the interval 1]. However,
images by looking only at the upper levels of the pyramids, the algorithms we describe can be trivially extended to work
as in the branch-and-bound optimization paradigm. Experi- with color images, and/or with images of different sizes.
ments indicate that MuSIS can provide significant speedup For each imagel we define animage pyramidl =
relative to exhaustive search. The metdod is exact (it away (I, 1V ... 10™)), where eachl®) is a version of I
returns the exact best match) and can be adapted to workeduced by a factor of /2* in each direction, and therefore
with many image similarity functions. a factor1/4* in area. The parameten is usually chosen
Keywords: Content-based image retrieval; interval arith- so thatl™ has a single pixel.
metic;, multiscale distance. We will denote by p*) the common domain of all
images reduced to scale Each pixell®)[p] of a reduced
|. INTRODUCTION imagel®) is a pair of real numbergl*)[p], o1*) [p] where
Content-based image retrieval systems [3] often assume
that the d_atabase is_ prg—processe_d by computdq:;;ariptpr pl®) lp] = ik Z Iq] (1)
for each image, which is a numerical summary of the image

k
features that are considered relevant for searching. $irece =Pl
search algorithms operate on the descriptors, the types of 1
queries that users may pose are necessarily limited by the AP pl= | = > g —md®p)? (2
nature of the precomputed descriptors. 4 qeP® [p]

Here we describe a different approach that does not use
any specialized descriptors, and relies insteachati-scale andP¥)[p] is the set of pixels il that correspond to pixel

or (multi-resolutior) techniques to speed up the queries. j of 1), We refer to these formulas as the-reduction
In this method, the preprocessing phase merely createsprocess.

several reduced copies of each image, at various scales.
Each pixel of the reduced images consists of the avegage
and deviations of the corresponding pixels in the original
image. Using only the upper levels of the pyramids, we can
quickly compute guaranteed upper and lower bounds for the
distance between two images; which allow us to efficiently
discard most database candidates without ever computing
the corresponding exact distances.

1. NOTATION AND DEFINITIONS )
Figure 1. A monochromatic image, and the reduced versions

In this paper we consider the following problem: given of the same obtained byo-reduction.

a largeimage databasé3;, Bs, ... By, and aquery image
A, find the imageB* in the database that is closest 4o Note that the level zero versidil®) does not have to be
in some arbitrary metridist(x, *). computed or stored, since it can be trivially recreated from
We assume that each imadeis a function defined on  the original image; namelyl(®) [p] = I[p] andoT(®)[p] = 0,
some finite rectanguladomainD C Z x Z. For simplicity, for all p. Therefore, the pyramid of an image occupies about
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14+2(1/44+1/42 4+ ---+1/4™) < 5/3 ~ 1.67 times as
much space as the original image.

I"l.
A. Description of the algorithm

M ULTI-SCALE INTERVAL SEARCH

Our algorithm, which we calinulti-scale interval search
(MusSIS), is shown in figure 2. It assumes that-pyramids
have been precomputed for all imagBs in the database
and for the query imagd. The algorithm keeps a sétof
candidate imageshat is guaranteed to contain the correct
answer — namely, the image from the database that is
closest to the query imagg, in the metricdist(x, *).

The setC is kept as a collection of quadruples=
(¢.B,c.B,c.k,c.d), wherec.B is a handle to an image of
the database;.B is the precomputed pyramid efB, c.k
is a scale of resolution, andd is an interval estimate for
dist(A, c.B), computed from the reduced versioh¥) and
c.B®*). Here and in the following, ainterval is a pair of
numbersv = [v],v]] that represents the set of all real
valueszx such thatv] < x < vT. The algorithm also main-
tains a global intervadl* such thatdist(4, B*) € d*. This
interval is the minimum of all the intervatsd in C, that is
d*] =min{ed|:eeC}andd*? =min{e.dl:eeC}.

1. SetC to contain all quadruplesB, B, m+1, [0_1])
such thatB is in the database. Seét — [0 _1].

2. Let ¢ be a candidate with minimuna.d]. If
#C =1, returnc.B as the answer to the query an
stop. Otherwise let be some after candidate with th
second-smalest.d|. If c.d] < e.d|, then returnc.B
as the answer to the query and stop.

3. Select some candidate from C. Compute a
new interval estimate!’ for dist(A, c.B), using the
reduced imaged\(¢*~1 and c.B(¢*~1, Setd —

d' N c.d. Replace the candidate in the queue by
¢ =(e.B,eB,c.k—1,d"), and update* accordingly.

4. Remove fromC every candidatec which has
c.d| > d*1. Repeat from stef.

Figure 2. The MuSIS algorithm.

The general situation during the MuSIS search is illustrate
in figure 3 (top). Each error bar indicates the interval esti-
matec.d for some candidate in C. The dashed horizontal
lines indicate the interval*, which here coincides with the
interval c.d of candidate) At each iteration in ste3, we
refine the estimate odist(A, c.B) of a candidate: from
the list using the versions*—1 ¢ B*~1 at the next finer
scale. We then updatg, and that may allow us to eliminate
some candidates from the list.

Figure 3 (bottom) shows the outcome of such an event:
after candidat® was re-evaluated, the intervdt came to
be defined in sted by the low end of the new candidate

0 and the high end of the new candidatéNith the lower
value ofd* |, it was possible to discard more than half of the
candidates from the queue—without ever computing their
exact distances froml.
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Figure 3. Two successive iterations of the algorithm.

The new intervald’ computed in ste® should ideally be

a sub-interval ofc.d. However, depending on howlist

is computed, this may not be always true in practice. In
any case, if bothe.d andd’ are correct interval enclosures
for the exact distancelist(A, B), the same is true of
their intersection. The commantl — d’ N d is therefore
harmless, and it has the merit of ensuring tidt < c.d|
andd’'| > c.d|. Therefore, to update the high erd? it
suffices to dod*? <« min{d*7,d'1}. To update the low
endd*| efficiently, on the ofter hand, we need to keep the
candidate tuples in a heap data structure, sorted| byith

the minimum at the root.

B. Correctness

The main loop of the algorithm preserves the following
invariants (a): there is a candidatein C such thatc.B
is the correct answeB* (the image from the database for
which dist(A, c.B) is minimum); and (b) the exact distance
dist(4, c.B) lies in the intervalc.d, for every candidate
in C. These invariants are obviously true at the beginning,
and stepd only eliminates a candidateif dist(A, c.B) is
guaranteed to be larger thaklist(A,e.B) wheree is the
candidate inC that defined the value af*T.

Moreover, at every step the algorithm either eliminates
one or more candidates, or decrementscthdield of some
candidate. In a candidatewith c.k = 0, the intervalc.d
must be a singleton (that is, we must havé| = c.d?).
Therefore, in stef, if all the candidates of havec.k = 0,
then we must have.d| = c.dl = e.d] = e.d], so the
algorithm will stop. The termination and correctness of the
algorithm then follows.

C. Efficiency

The worst case for this algorithm is when no candidates
are eliminated in sted, and the iteration continues until
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all candidates in the queue haw& = 0. Only at that point used also after a suitable preprocessing of the images (e.qg.
will the algorithm stop, because of the second test of 8tep  replacing each image by its absolute gradient, in order to
Assuming that the interval-valued version @ikt is at reduce the effect of lighting variations).

mosté times more expensive than the single scale version,
and that the cost of computintist(A, B) is approximately ] e |
an for images withn pixels, then the worst-case cost — ' ‘ ‘ .
computingdistgk) at all scales, for allvV database images ' i ‘ H

— will be Nan(1+6/4+ /4% + --- + §/4™), which is | X | | AN
less thanNom(i + 5//3). In/comparison,/th(g brute-force query 0.238870 ~ 0.258277  0.263883

algorithm has costVan. Therefore, the worst-case cost of Figure 4. A query image and the three best matches in our
MuSIS is only 1 + §/3 times the cost of the brute-force test database, according to the plain Euclidean méisic .

algorithm. A. Estimating distance from mean and deviation
However, each tuple with £ > 0 that can be eliminated

in step4 will cost only San(1/4%4+1/4k+1 ... 41/4™) <

(6/3/4*=Yan operations. This is§/3/4*~! times the

brute-force cost, and this factor is usually less thamhen

k > 2. Therefore, if enough quadruples get eliminated

when they have largé values, the savings will offset the N 1

overhead. dist$” (A, B) = T > A2AB[LBE[])  (5)
peDF)

For many kinds of images, such as outdoor photographs,
the Euclidean distancéisto (A, B) can be effectively esti-
mated from the reduced versioas®) B(*) at any scalek.
Namely, Ietdistgk) (A,B), be the interval

D. Which candidate to recompute

In step3, we use the following heuristic to choose the whereA?(a,b) is the interval with bounds
candidatec that is to be refined: let and e be the first

2 _ _ 2 _ 2
two candidates in order of increasinag, breaking ties by A% l(a,b) = (pa = pb)” + (o — ob) 6)
decreasing:. If c.k # e.k, select the one witkargestk. If A?1(a,b) = (pa — pb)* + (ca + ob)? (7)
c.k = e.k, select the one with smallegy. )
Note that one cannot havek = e.k = 0 at this time, Formulas (5)- (7) are based on the observation that the

since the two intervals would be singletons, in which case difference between a signal and its mean value is orthogonal

the smallest of the two should have been excluded in4tep O the constant signal with that mean value. They yield
an interval that contains the distandésts(A, B) in the

IV. IMAGE DISTANCE original scale. Note thatist\” (A, B) is a singleton interval
The correctness of the MuSIS algorithm is independent containing onlydists (A, B).
of the image distance functiodiist. In fact, dist does not The po-reduction formulas (1)- (2) as well as the
have to be a metric in the mathematical sense of the term;estimator formulas (5)- (7) are affected by roundoff errors
and any metricdist’ that is a monotonic function odlist and by noise due to the quantization.df*) [p] andoI(* [p]
will result in the same output. when these are stored as digital images. Therefore, all

In some of our tests, we used the most basic metric for those formulas must be computed using Mooiaterval
evaluating the discrepancy between two images, namely thearithmetic[2], so that all arithmetic operations are properly
normalized Euclidean distancdefined by rounded; and the quantization errors must be included
1 intervals. These precautions are necessary to ensurééhat t
dista(A, B) = D Z |Alp] — B[p]® (3 interval estimate does indeed contain the exact distance.

peD

o o ] ] B. Cumulative image distance
For efficiency, it is more convenient to work with the square i i i i
of this distance,dist2(A, B). Note that, distz(A, B) = The Euclidean distance (3) is a basic tool for other
rms(A — B) and,dist%(A’ B) — msq(A - B) whéfe image metrics, such as tlkemulative multiscale Euclidean
’ 2 ' distance dist;. This metric is a weighted mean of the

Euclidean distances at all scales, that is,

msa(l) = - S (p)?, rms(l) = v/msa(D) (4)

#D e disty(A, B) = S\, dista(ua®), By (8)
If the pixel values are real numbers @, 1], the value of r=0
disto (A, B) (or dist3(A, B)) is also in[0,1]; and itis zero  The weights\,. are numbers betwednand1, whose sum is
if and only if the images are identical at every pixel 1. Typically they are chosen in geometric progression with

As can be seen in figure 4, the Euclidean distance maysome ratiog, that isA, = 67(6 —1)/(8™ —1). If 8 > 1,
be too simple for pratical applications. However, it can be the metricdist; (A, B) gives more weight to the diferences
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at the finest scales; i < 1, it gives more weight to the  Each search was repeated twice, once using the plain
diferences in the coarsest scalesglf= 1 all weights are Euclidean distancelisto and once using the cumulative
equal (/m). See figure 5 e 6. distancedist} with g = 2.

Table | )
Costs of the MuSIS algorithm.

|7 =M - \
\ ' & k|| M, Ny Ck My, Ny Ci
71 0.0] 3840.0 0.469 || 3840.0] 3840.0 0.703
\ = r \ ) | 6| 00| 22788 1.113| 651.0| 651.0 0.477
query 0.222514  0.243298  0.243907 5| 0.0|1620.5| 3.165| 104.2| 104.2 0.305
Figure 5. A query image and the three best matches with g 8-8 222-(5) 1525-22; 12-2 13-3 8-15;
cumulative Euclidean distancetst; with 5= 1/2. >l 0ol 1208 15105 15 s 0.285
= 1| 00| 31.2| 15585 1.2 1.2 0.870
| ' 0| 6.7 0.0 6.700 0.7 0.0 0.670
' MUS 61.125 3.561
\ B | BRU 3840.000 5119.922
query 0.044553 0.047958 0.051262 P 0.01592 0.00070
Figure 6. A query image and the three best matches with The columnsiz,, Ny, Cj, refer to queries usingisto: M,
cumulative Euclidean distanetst; with 3 = 2. is the number of plain distancekist, computed between

Like the plain Euclidean distance, the cumulative image images at each levet; N, is the number of interval
distancelist; (A4, B) can be efficiently estimated by looking estrmatesdlth) for the Euclidean distance at level O,

only at the highest levels of the pyramids B. Namely, computed from the images at levk] and C}, is the cost

suppose we want to compute an estimiite; () (A, B) for of those operations. Column&/;,, N;, and Cj, are the

dist3 (A, B) using only levels:, k+1, ..., m of the pyramids analogous counts and costs for queries usisg;.

A, B. For this, we split formula (8) into four parts: As in section IlI-C, the table assumes that the cost of

dist, for two images at levek is 4~% (in particular, 1 for

Bl level k = 0), and that ofdistgk) is 64=F. The factord—*

dist} (k)(A B) = Aodo + Z/\ dy + Medy, + Z \-d, accounts for the relative number of pixels, and the factor
—1 r—ht1 of § accounts for the overhead of fetching the two reduced

. _ versions of the imageB*) andoB(*)), and computing the
whered, = distz(nA, uB"), for all 7. The first term  jnterval estimate (5), instead of fetching a single image an
Aodo 1S S|mpkly Ao dista(A, B) so can use the interval  computing a plain distance. For table I, we assurfied?.
estimatedist}” (4, B) of formulas (5)- (7), scaled by Row Mus shows the total cost of a query by the MuSIS
Ao. The third partA.d; can be computed directly. For  gigorithm. RowBRU is the corresponding cost for the brute-

the fourth part} ", ., A.dr, we just accumulate the force algorithm. The last row shows the relative efficiency
values ofA.d,. previously computed for all higher levels. of MuSIS, that is the ratip =mus/BRU.

These two parts are exactly computedand therefore provide

singleton intervals. Finally, for the paff "~ \.d,, we VI. CONCLUSIONS
observe that the the dist%nde, for all » < k, lies in the These preliminary tests show that the MuSIS algorithm,
interval u = [dy — a,distg )(A,IB%)T + €], wheree is the even in its simplest implementation, can substantively re-

expected magnitude of quantization errors in the imagesduce the cost of searching for the closest image. The basic
pA™) and uB(™). Therefore, an estimate for the second algorithm can be improved and extended in many ways, an
part Z’“_} Ard, is the intervalu scaled byy "™, | A can be combined with other traditional techniques such as
The interval-arithmetic sum of these four intervals WIH’:th clustering and application-specific descriptor extractio
containdist; (A, B).
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