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Abstract—Traditional designs of multicarrier transceivers re-

quire an amount of redundancy of at least the order of the

channel. This redundancy eliminates the inherent interblock

interference (IBI) and allows the exploitation of the resulting

channel matrix to design superfast zero-forcing (ZF) and min-

imum mean-square error (MMSE) equalizers. Although it is

well known that the minimum redundancy for IBI-free designs

of memoryless linear and time-invariant (LTI) transceivers is

around half of the channel order, all practical solutions do

not employ minimum redundancy. This paper reviews in a

unified way a family of block transceivers with superfast

implementations employing the minimum redundancy. The

related structures of practical ZF and MMSE receivers are

presented and their performances are compared in terms of

throughput for fixed bit-error rate (BER). The main feature of

these transceivers is their higher throughput allowing the use

of the wireless channels more effectively.

Keywords—Block transceivers; displacement; equalization; min-
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I. INTRODUCTION

The efficient use of the scarce radio-frequency band requires

smart transceiver designs. The evolution of modern communi-

cations systems is driven by a search for new techniques that

enable an efficient bandwidth usage. In general, this efficiency

may be translated into either higher throughputs or higher

system capacity. However, all these features are constrained

by the available budget, calling for “simple” solutions.

The orthogonal frequency-division multiplex (OFDM) is a

representative example of physical-layer technique that con-

tributes to the aforementioned evolution. In fact, the OFDM

enhances the throughput performance of previous systems,

such as single-carrier transceivers based on either time- or

code-division multiple accesses. In addition, the OFDM is

extremely easy to implement in digital transmissions, since

it uses fast Fourier transform algorithms and single-tap equal-

izers.

The widespread adoption of OFDM-based multicarrier

transceivers confirms that efficient implementation is a nec-

essary requirement. Wireless local and metropolitan area net-

works (WLAN and WMAN) following the families IEEE

802.11x and IEEE 802.16x standards, most modern digital

television systems, wired Internet connections using digital

subscriber lines (xDSL), and the downlink of the 3G-LTE

system are all based on OFDM.

Nevertheless, OFDM-based systems have also some draw-

backs. Indeed, the OFDM transceivers employ a given number

of redundant elements (data that, a priori, do not contain

any additional information), reducing the effective data rate

or throughput. The redundancy is utilized by the transmis-

sion/reception processing to cope with the effects of the dis-

tortion introduced by frequency-selective channels. In fact, for

a finite-impulse response (FIR) channel model with order L,

the OFDM introduces at least L redundant elements before the

transmission. This is an issue that reduces the throughput of

the transceivers, especially when the channel is very dispersive

(large L).

The OFDM system can be cast as a particular case of

FIR transmultiplexers. A general theory regarding the use

of redundancy in FIR transmultiplexers was first developed

in [1], [2], [3], with some further improvements described

in [4]. When dealing with memoryless LTI transmultiplexers,

which are the simplest FIR transmultiplexers, the authors in [2]

proved that the minimum required redundancy is only ⌈L/2⌉,

instead of L.

In this paper, we review some recent advances in the

design of memoryless LTI transmultiplexers with minimum

redundancy. The resulting transceivers may be multicarrier or

single-carrier, with either ZF or MMSE receivers. In addition,

the transceivers only employ diagonal matrices and superfast

transforms, such as discrete Fourier and Hartley transforms

(DFT and DHT). For this reason, the transceivers are com-

putationally as simple as OFDM-based systems,1 while being

much more efficient with respect to the bandwidth usage.

II. TRANSMULTIPLEXERS

The filter-bank transceivers, also known as transmultiplex-

ers, are key building blocks for both single-carrier and mul-

ticarrier communications systems. They are important due to

their efficiency for data transmissions through channels with

moderate to severe intersymbol interference (ISI) [1], [5].

As described in [2], [5], any block-based transmulti-

plexer may be represented by a transmitter matrix F(z) ∈
C

N×M [z−1], a receiver matrix G(z) ∈ C
M×N [z−1] and a

pseudo-circulant channel matrix H(z) = HISI + z−1HIBI ∈
C

N×N [z−1]. The dimensions of such matrices are determined

by both the number of data symbols M ∈ N in a block, and

1Considering the asymptotic amount of complex-valued multiplications and
additions used in their implementations.
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the total length N ∈ N of the transmitted block, including

K = N − M redundant elements. The matrices F(z) and

G(z) are the polyphase matrices of the transmultiplexer.

Furthermore, given an Lth-order channel model, the matrix

HISI models the ISI effect within a transmitted block, whereas

the matrix HIBI models the IBI effect between two consecutive

blocks, where it was assumed that L < N [4]. The reader

should refer to [1], [2] for detailed definitions of such matrices.

The memoryless LTI transmultiplexer is modeled by F(z) =
F and G(z) = G for all blocks, considering the channel

time-invariant. Traditional OFDM-based systems are special

cases of block-based memoryless LTI transmultiplexers. Lin

and Phoong [2] showed that the redundancy K of an IBI-free

memoryless LTI transmultiplexer must satisfy the inequality

2K ≥ L. They proposed a general parametrization for such

systems, as well as a very useful special case of reduced-

redundancy systems. This special case, also known as zero-

padding zero-jamming (ZP-ZJ) transceiver, is characterized

by the following transmitter and receiver matrices, respec-

tively [2]: F = [FT
0 0M×K ]T , where F0 ∈ C

M×M , and

G = [0M×(L−K) G0 ], where G0 ∈ C
M×(M+2K−L).

When the ZP-ZJ system with reduced redundancy is em-

ployed, the resulting transceiver can be simplified as a trans-

mitter matrix F0, a receiver matrix G0 and an effective chan-

nel matrix H0 ∈ C
(M+2K−L)×M . This effective channel ma-

trix is a Toeplitz matrix with first row given by [h(K) h(K−
1) · · · h(0) 01×(M−K−1) ] and first column given by

[h(K) h(K + 1) · · · h(L) 01×(M+3K−2L−1) ]T [2]. In

this work, we shall focus on the minimum-redundancy case,

i.e., K = L/2, where L is assumed to be even [7]. Note that,

with this choice, F0, H0, and G0 are all square matrices.

The ZF and the MMSE linear receivers are commonly used

to generate an estimate ŝ of the transmitted vector s. Such

solutions are respectively characterized by the following pair

of receiver matrices:

GZF
0 = (H0F0)

−1 = F−1
0 H−1

0 (1)

GMMSE
0 = (H0F0)

H

[

(H0F0)(H0F0)
H +

σ2
v

σ2
s

I

]−1

(2)

where, for the ZF solution, it is assumed that H0F0 is

invertible, whereas for the MMSE solution it is considered

that the symbols and the additive noise at the receiver front-

end stem from independent white random process with zero

mean and variances σ2
s , σ2

v ∈ R+, respectively.

We are able now to define two fundamental tasks: equaliza-

tion and receiver design. In this work, equalization is defined

as the multiplication of a received vector by the receiver

matrix. Hence, this task requires O(M2) numerical operations

for unstructured matrices. On the other hand, the receiver

design consists in computing the matrices GZF
0 or GMMSE

0 .

Such a task requires O(M3) numerical operations for generic

matrices, considering that channel-state information (CSI) is

available at the receiver end, and assuming that the transmitter

matrix F0 had been previously defined.

Traditional OFDM-based systems perform both tasks with

O(M log2 M) numerical operations, when M is a power of

two. These superfast solutions are achieved because OFDM-

based transceivers benefit from the circulant shape that is

induced in the effective channel matrix, allowing the spectral

decomposition of such a matrix through DFT (eigenvector

matrix) and the channel-frequency response (eigenvalues) [1].

Nevertheless, it is also possible to implement low-redundancy

transceivers using a reduced amount of numerical operations.

This paper reviews some approaches related to how to ex-

ploit the Toeplitz structure present in the effective channel

matrix H0 in order to produce solutions for the equaliza-

tion task related to memoryless LTI transmultiplexers, using

only O(M log2 M) operations. It is possible to perform the

receiver-design task using only O(M log2
2 M) operations, as

described in [10].

III. STRUCTURED-MATRIX REPRESENTATIONS

Several engineering problems induce structural patterns in

their matrix representations. These structural patterns provide

efficient means for exploiting features of the problem that they

model. Moreover, operations involving structured matrices can

be simplified by taking into account the structural patterns.

Consider, for example, the sum of two M × M circulant

matrices. If one ignores the structural patterns present in such

matrices, then this operation will require M2 additions. How-

ever, if one does consider the structure of the matrices, then

this operation will require only 2M addition corresponding to

the sum of the first rows of each matrix. Thus the resulting

circulant matrix can be built by rearranging the elements of

the resulting vector accordingly.

A useful tool for exploiting the structure of a matrix is the

displacement approach [6]. The displacement-rank theory re-

veals how many parameters a given structured matrix depends

on. To do so, the first step of the displacement approach is to

generate a reduced-rank matrix through a linear mapping of the

original structured matrix. This reduced rank is the so-called

displacement rank. After this compression stage, computations

with the resulting matrix with smaller rank can be performed

efficiently, since there is a reduced amount of parameters to

operate on. After all, the required result can be assessed by

inverting, when possible, the displacement linear operation.

The latter process is called decompression.

Formally, by considering that X,Y,U ∈ C
M×M , the

linear transforms ∇X,Y(U) = XU − UY and ∆X,Y(U) =
U − XUY are the so-called Sylvester and Stein displacement

operators, respectively [6]. When applied to a structured

matrix U, these linear maps, e.g. ∇X,Y, may generate a new

matrix with smaller rank. Usually, such a new matrix is repre-

sented by ∇X,Y(U) = PQT , with (P,Q) ∈ C
M×S ×C

M×S

and rank{∇X,Y(U)} = R ≤ S ≪ M .

A good illustration of the displacement approach is the

compression of a square Toeplitz matrix. Consider an operator

matrix Zλ = [ e2 · · · eM λe1 ], for some λ ∈ C, where

each vector em is an all-zero vector, except for a 1 in the mth

position. The Sylvester operator ∇Zη,Zξ
applied to a Toeplitz
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Fig. 1. DFT-based multicarrier system with minimum redundancy: ZF solution [7].

matrix T yields

∇Zη,Zξ
(T)=ZηT − TZξ

=








1
0
...

0








︸︷︷︸

p̂1

[
ηtM−1 − t−1 · · · ηt1 − t1−M ηt0

]

︸ ︷︷ ︸

q̂T
1

+








−ξt0
t1−M − ξt1

...

t−1 − ξtM−1








︸ ︷︷ ︸

p̂2

[
0 0 · · · 1

]

︸ ︷︷ ︸

q̂T
2

= p̂1q̂
T
1 + p̂2q̂

T
2 = [ p̂1 p̂2 ]

[
q̂T

1

q̂T
2

]

= P̂Q̂T . (3)

The former example shows how to compress a Toeplitz

matrix. After this compression stage, several operations can

be efficiently performed using well-known results from the

displacement theory [6]:

∇Y,X(U−1) = −U−1∇X,Y(U)U−1, (4)

∆X,Y−1(U) = −∇X,Y(U)Y−1, (5)

∇X,Z(UV) = ∇X,Y(U)V + U∇Y,Z(V), (6)

∇X,Y(αU + βV) = α∇X,Y(U) + β∇X,Y(V), (7)

for any scalars α, β, and any 5-tuple {U,V,X,Y,Z} of

complex-valued matrices with compatible dimensions and,

when necessary, nonsingular.

To conclude our brief description of structured matrices,

let us define the discrete Fourier and Hartley transforms. By

defining four class of angles θI(i, j) = 2ijπ/M , θII(i, j) =
i(2j + 1)π/M , θIII(i, j) = (2i + 1)jπ/M , and θIV(i, j) =
(2i + 1)(2j + 1)π/2M , for (i, j) ∈ { 0, 1, · · · ,M − 1 }2, the

orthogonal DHT-X matrix is [9]:

[HX ]ij =
sin[θX(i, j)] + cos[θX(i, j)]√

M
, (8)

whereas the unitary DFT-X matrix is defined as [9]:

[WX ]ij =
sin[θX(i, j)] −  cos[θX(i, j)]√

M
, (9)

with 2 = −1 and X ∈ {I, II, III, IV}. Sometimes, we refer to

WI as WM . These matrices enjoy superfast implementations

requiring only O(M log2 M) numerical operations.

IV. LOW-REDUNDANCY TRANSCEIVERS

Inspired by the standard implementations of OFDM-based

transceivers that decompose the circulant effective channel

matrix by using DFT, IDFT, and diagonal matrices, we shall

describe now the factorization of the inverse of the Toeplitz

effective channel matrix H0 using diagonal matrices and

superfast transforms, such as DFT and DHT.

A. DFT-Based Transceivers

By applying the concepts of the displacement theory one

can compress the effective channel matrix H0 similarly to

the way performed in (3). After this compression stage,

the compressed representation of H−1
0 can be obtained by

using (4). The properties of the resulting compressed matrix

can be exploited to conceive the following representation for

the receiver matrix [7]:

G0 =
1

2
FH

0 WH
M

(
R∑

r=1

Dp̃r
WMDWMDq̃r

)

WH
MDH , (10)

where Dx = diag{x} for any vector x, D =
diag{e π

M
m}M−1

m=0 , and p̃r and q̃r are vectors that depend on

H0. This dependency is expressed as a function of both H−1
0

and the Sylvester displacement of H0, namely ∇Z
−1,Z1

(H0).
The parameter R defines the number of parallel branches

used for equalization at the receiver end [7], [8], [9]. A ZF

solution uses R = 2 branches, whereas an MMSE solution

uses R = 4 branches. A single-carrier transceiver can be

designed by setting F0 = I, whereas a multicarrier system

can be designed by setting F0 = WH
M for both MMSE and

ZF designs.

Fig. 1 depicts the resulting multicarrier transceiver structure

for the ZF case. The prefilter can be used to shorten the

channel and/or to modify some of its characteristics [2]. The

mth phase shifter, or rotator, is defined as e± π
M

m. The single-

tap equalizers contain the elements of the vectors q̃r and p̃r.

B. DHT-Based Transceivers

It is also possible to use real transform-based

transceivers [9]. Among the advantages of using these

transceivers, we can highlight the fact that multicarrier
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systems may benefit greatly from using them along with real

baseband modulations, such as PAM, since the transmission

of inphase/quadrature (I/Q) independent data is not required,

avoiding I/Q–imbalance problems. As a drawback, however,

the proposed transceivers require the effective channel to be

symmetric.

Similarly as described in Subsection IV-A, the receiver

matrix can be decomposed as [9]:

G0 =
M

2
FT

0 HIII

(
R∑

r=1

Dp̃r
HIIHIVDq̃r

)

HIV, (11)

where, in this case, the single-carrier solution can be designed

by setting F0 = I, whereas the multicarrier solution can be

designed by setting F0 = HIII for both MMSE (R = 4) and

ZF designs (R = 2).

V. SIMULATION RESULTS

We transmit 200 data blocks carrying M = 32 symbols of

a BPSK constellation. In fact, each data block stems from 16
data bits that, after channel coding (with constraint length 7,

code rate Rc = 1/2, and octal generators g0 = [133] and

g1 = [165]) [7], yields 32 bits to be baseband modulated.

We assume that both symbol and channel models use the

sample frequency fs = 1.0 MHz. We also consider that

both synchronization and channel estimation are perfectly

performed at the receiver end.

The throughput is computed by using a Monte-Carlo averag-

ing process with 10, 000 simulations. For each new simulation,

a new random Rayleigh channel with uniform power-delay

profile is generated (L = 30). The computation of the through-

put is based on the expression ρRcM(1−BLER)fs/(M +K)
bps, where ρ is the number of bits required to represent one

symbol in a given constellation, Rc is the code rate, K is

the amount of redundancy (L = 30 for standard OFDM and

L/2 = 15 for our proposals), fs = 1.0 MHz is the sample

frequency, and BLER is the block-error rate. We consider an

error-free type of application, so that a block error is computed

whenever at least one of the 16 data bits obtained after channel

decoding is erroneously detected.

Let us focus on the DFT-based transceivers from now on.

Fig. 2 depicts the throughput curves for the OFDM, the

single-carrier with frequency-domain (SC-FD) equalization,

the multicarrier minimum-redundancy block transceiver (MC-

MRBT), and the single-carrier minimum-redundancy block

transceiver (SC-MRBT), using both ZF and MMSE designs.

By observing this figure it is possible to verify that the

throughput performances of the proposed transceivers are

much better than the traditional ones, except for SNRs lower

than 12 dB in the ZF solutions. Note that such favorable

result stems from the choices for M and L (delay constrained

applications in very dispersive environments). These types of

applications are suitable for the proposed transceivers. In the

cases where M ≫ L, the traditional OFDM and SC-FD

solutions are more adequate.

In this simplified setup, it was observed an analogous

behavior of the DHT-based transceivers. Hence, due to lack of
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Fig. 2. Throughput as a function of SNR for random Rayleigh channels [7].

space, we will omit the results related to these real transform-

based transceivers.

VI. CONCLUDING REMARKS

This paper reviewed some recent advances of low-

redundancy transceivers. The ZF and MMSE solutions were

described for both multicarrier and single-carrier systems.

The resulting transceivers employ only diagonal matrices, and

DFT or DHT matrices. This is important to turn the new

transceivers computationally efficient. All of these attractive

features were achieved using the properties of structured

matrices. Simulation results demonstrate that low-redundancy

solutions allow higher throughput in a number of situations,

revealing the potential usefulness of both DFT- and DHT-based

transceivers.
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