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Abstract—In this keynote lecture the author presents a 

research ideology, a novel multi-paradigm 

methodology, and advanced computational models for 

automated electroencephalogram (EEG)-based 

diagnosis of neurological disorders. The methodology is 

based on adroit integration of three different computing 

technologies and problem solving paradigms: neural 

networks, wavelets, and the chaos theory. Examples of 

the research performed by the authors and his associates 

for automated diagnosis of epilepsy, the Alzheimer’s 

Disease, and Attention Deficit Hyperactivity Disorder 

are discussed 

I. INTRODUCTION 

The author started this research track about a 

decade ago with the general goal of helping neurologists 

in their diagnosis of neurological disorders. Highly 

trained neurologists and epileptologists  currently read 

EEGs, that is, try to identify visual markers of EEGs. 

But, EEGs can include markers invisible to the eyes of 

neurologists. The author’s research also challenges the 

assumption that the EEG represents the dynamics of the 

entire brain as a unified system and needs to be treated 

as a whole. On the contrary, an EEG is a signal that 

represents the effect of the superimposition of diverse 

processes in the brain. There is no good reason why the 

entire EEG should be more representative of brain 

dynamics than the individual frequency sub-bands. In 

fact, the sub-bands may yield more accurate information 

about constituent neuronal activities underlying the 

EEG and, consequently, certain changes in the EEGs 

that are not evident in the original full-spectrum EEG 

may be amplified when each sub-band is analyzed 

separately. This has been a fundamental premise of the 

author’ approach which is presented in a new treatise 

(Adeli and Ghosh-Dastidar, 2010).  
Over the years research on EEG analysis was 

focused mostly on seizure detection and epilepsy 
diagnosis. In recent years  the research has extended into 

other neurological issues and disorders (Kramer et al., 
2007; Montina et al., 2007; Wang et al., 2007; 
Chiappalone et al., 2007; Postnov et al., 2007; Chen et 
al., 2007; Chakravarthy et al., 2007; Osterhage et al., 
2007;  Lee et al., 2007; Ghosh-Dastidar and Adeli, 
2009a&b; Osorio et al., 2009; Shoeb et al., 2009; Good 
et al., 2009). 

II. EPLEPSY 

About one percent of the people in the world suffer 

from epilepsy and 30% of epileptics are not helped by 

medication. Careful analyses of the EEG records can 

provide valuable insight and improved understanding of 

the mechanisms causing epileptic disorders. Wavelet 

transform is particularly effective for representing 

various aspects of non-stationary signals such as trends, 

discontinuities, and repeated patterns where other signal 

processing approaches fail or are not as effective 

(Pakrashi et al., 2007; Su et al., 20007; Xie et al., 2007; 

Spanos et al., 2007; Montejo and Kowalsky, 2008; 

Umesha et al., 2009; Yazdani and Takada, 2009; Rizzi 

et al., 2009). Earlier, Adeli et al. (2003) investigated 

discrete Daubechies and harmonic wavelets for analysis 

of epileptic EEG records. Wavelet transform is used to 

analyze and characterize epileptiform discharges in the 

form of three-Hz spike and wave complex in patients 

with absence seizure. Through wavelet decomposition 

of the EEG records, transient features are accurately 

captured and localized in both time and frequency 

context. The capability of this mathematical microscope 

to analyze different scales of neural rhythms was shown 

to be a powerful tool for investigating small-scale 

oscillations of the brain signals.  

Adeli, Ghosh-Dasidar, and Dadmehr (2007) present 

wavelet-chaos methodology for analysis of EEGs and 

delta, theta, alpha, beta, and gamma sub-bands of EEGs 

for detection of seizure and epilepsy diagnosis. The 

non-linear dynamics of the original EEGs are quantified 

in the form of the correlation dimension (CD, 

representing system complexity) and the largest 
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Lyapunov exponent (LLE, representing system 

chaoticity). The wavelet-based methodology isolates the 

changes in CD and LLE in specific sub-bands of the 

EEG. The methodology is applied to three different 

groups of EEG signals: (a) healthy subjects (b) epileptic 

subjects during a seizure-free interval (interictal EEG), 

and (c) epileptic subjects during a seizure (ictal EEG). It 

is observed that while there may not be significant 

differences in the values of the parameters obtained 

from the original EEG, differences may be identified 

when the parameters are employed in conjunction with 

specific EEG sub-bands.  

Ghosh-Dastidar, Adeli, and Dadmehr (2007) 

present a novel wavelet-chaos-neural network 

methodology for classification of EEGs into healthy, 

ictal, and interictal EEGs. Three parameters are 

employed for EEG representation: standard deviation 

(quantifying the signal variance), correlation dimension, 

and largest Lyapunov exponent. The classification 

accuracies of the following techniques are compared: a) 

unsupervised k-means clustering, b) linear and quadratic 

discriminant analysis, c) radial basis function neural 

network, and d) Levenberg-Marquardt backpropagation 

neural network (LMBPNN). It is concluded that all 

three key components of the wavelet-chaos-neural 

network methodology are important for improving the 

EEG classification accuracy. Judicious combinations of 

parameters and classifiers are needed to accurately 

discriminate between the three types of EEGs. It was 

discovered that a particular mixed-band feature space 

consisting of nine parameters and LMBPNN result in 

the highest classification accuracy, a high value of 

96.7%. 

Ghosh-Dastidar, Adeli, and Dadmehr (2008) 

present a two-stage principal component analysis 

(PCA)-enhanced cosine radial basis function neural 

network classifier and integrate it with the 

aforementioned mixed-band wavelet-chaos 

methodology for accurate and robust classification of 

EEGs into healthy, ictal, and interictal EEGs. A nine-

parameter mixed-band feature space discovered in 

previous research for effective EEG representation is 

used as input to the two-stage classifier. In the first 

stage, PCA is employed for feature enhancement. The 

rearrangement of the input space along the principal 

components of the data improves the classification 

accuracy of the cosine radial basis function neural 

network (RBFNN) employed in the second stage 

significantly. The new wavelet-chaos-neural network 

methodology yields high EEG classification accuracy 

(96.6%) and is quite robust to changes in training data 

with a low standard deviation of 1.4%. For epilepsy 

diagnosis, when only normal and interictal EEGs are 

considered, the classification accuracy of the proposed 

model is 99.3%. This statistic is especially remarkable 

because even the most highly trained neurologists do 

not appear to be able to detect interictal EEGs more than 

80% of the times. 
 

III. ALZHEIMER’S DISEASE 

Prediction or early-stage diagnosis of Alzheimer’s 

disease (AD) requires a comprehensive understanding 

of the underlying mechanisms of the disease and its 

progression. Researchers in this area have approached 

the problem from multiple directions by attempting to 

develop (a) neurological (neurobiological and 

neurochemical) models, (b) analytical models for 

anatomical and functional brain images, (c) analytical 

feature extraction models for electroencephalograms 

(EEGs), (d) classification models for positive 

identification of AD, and (e) neural models of memory 

and memory impairment in AD. Adeli, Ghosh-Dastidar, 

and Dadmehr (2005a) present a review of research 

performed on computational modeling of AD and its 

markers covering computer imaging, classification 

models, connectionist neural models, and biophysical 

neural models. It is concluded that a mixture of markers 

and a combination of novel computational techniques 

such as neural computing, chaos theory, and wavelets 

can increase the accuracy of algorithms for automated 

detection and diagnosis of AD. 

The popularity of imaging techniques for detection 

and diagnosis of possible AD stems from the relative 

ease with which neurological markers can be converted 

to visual markers. However, due to the expense of 

specialized experts and equipment involved in the use of 

imaging techniques, a subject of significant research 

interest is detecting markers in EEGs obtained from AD 

patients. Adeli, Ghosh-Dastidar, and Dadmehr (2005b) 

present a review of models of computation and analysis 

of EEGs for diagnosis and detection of AD covering 

three areas: time-frequency analysis, wavelet analysis, 

and chaos analysis. The vast number of physiological 

parameters involved in the poorly understood processes 

responsible for AD yields a large combination of 

parameters that can be manipulated and studied. The 

authors conclude that a combination of parameters from 

different investigation modalities seems to be more 

effective in increasing the accuracy of detection and 

diagnosis.  

Adeli, Ghosh-Dastidar, and Dadmehr (2008) 

present a spatio-temporal wavelet-chaos methodology 

for analysis of EEGs and their delta, theta, alpha, and 

beta sub-bands for discovering potential markers of 

abnormality in Alzheimer’s disease. The non-linear 

dynamics of the EEG and EEG sub-bands are quantified 

in the form of CD and LLE. The methodology is applied 

to two groups of EEGs: healthy subjects and AD 

patients. The eyes open and eyes closed conditions are 

investigated to evaluate the effect of visual input and 

attention. EEGs from different loci in the brain are 

investigated to discover areas of the brain responsible 

for or affected by changes in CD and LLE. It is found 

that the wavelet-chaos methodology and the sub-band 

analysis developed in this research accurately 

characterize the nonlinear dynamics of non-stationary 

EEG-like signals with respect to the EEG complexity 

and chaoticity.  It is concluded that changes in the brain 

dynamics are not spread out equally across the spectrum 

of the EEG and over the entire brain, but are localized to 
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certain frequency bands and electrode loci. New 

potential markers of abnormality were discovered in this 

research for both eyes open and closed conditions. 

 

IV. ATTENTION-DEFICIT/HYPERACTIVITY DISORDER 

Ahmadlou and Adeli (2010) present a multi-

paradigm methodology for EEG-based diagnosis of 

Attention-Deficit/Hyperactivity Disorder (ADHD) 

through adroit integration of nonlinear science, 

wavelets, and neural networks. The selected nonlinear 

features are generalized synchronizations known as 

synchronization likelihoods (SL), both among all 

electrodes and among electrode pairs. The methodology 

consists of three parts: first detecting the more 

synchronized loci (group 1) and loci with more 

discriminative deficit connections (group 2). Using SLs 

among all electrodes, discriminative SLs in certain sub-

bands are extracted. In part two, SLs are computed, not 

among all electrodes, but between loci of group 1 and 

loci of group 2 in all sub-bands and the band-limited 

EEG. This part leads to more accurate detection of 

deficit connections, and not just deficit areas, but more 

discriminative SLs in sub-bands with finer resolutions. 

In part three, a classification technique, radial basis 

function neural network, is used to distinguish ADHD 

from normal subjects. Using the RBF neural network 

classifier the methodology yielded a high accuracy of 

96.5% for diagnosis of the ADHD. 
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